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We consider the mathematical model of the heat- and mass-transfer 
process in the "hydrothermal solution--enclosing rocks" system and we 
present a method for the construction of the mathematical model. 

In s tudying the phys ieochemica l  p r o c e s s e s  involved 
in the in t e rac t ion  of hyd ro the rma l  solut ions  with en-  
c los ing  rocks ,  it becomes  n e c e s s a r y  to study the space -  
t ime  d i s t r ibu t ion  of m o i s t u r e  and t e m p e r a t u r e s  about 
the m i g r a t i o n  paths  of the solut ions .  

The dynamics  of m o i s t u r e -  and t e m p e r a t u r e - f i e l d  
fo rma t ion  is the mos t  impor t an t  factor  govern ing  the 
onset  and p r o g r e s s  of ore  fo rma t ion ,  of the changes in 
the rocks  su r round ing  the o re ,  and of the p r i m a r y  e l e -  
ment  s ca t t e r ing  halos. 

In d e t e r m i n i n g  the s p a c e - t i m e  d i s t r ibu t ion ,  we have 
to solve the sys t em of F o u r i e r - F i c k  pa r t i a l  d i f fe ren-  
tial equat ions  d e s c r i b i n g  the p r o c e s s e s  of heat-  and 
m a s s - t r a n s f e r  in va r ious  media .  F o r  a m u l t i s t r a t u m  
med ium,  in genera l  f o rm these  equat ions  are  r e p r e -  
sented by the s y s t e m  

vql Pc ~ = div (~'t grad t i) + ~i r, ~ 0 U s 

aU, = a~,, (V' U, + 5,V't,), 
0 x  

where (i = 1, 2 . . . . .  n). 
An additional condition ensuring a uniquely defined 

solution is the behavior of t i and U i at the boundaries 
of the region under consideration. 

Since such systems are used to describe a broad 
class of physical phenomena, it became necessary to 
develop reliable methods for the solution of the differ- 
ential equations. 

Over several tens of years, such methods have 
been developed, and they are being used successfully 
in various branches of science and engineering [1, 2, 
4, 7 ,8 ,  10]. 

However,  once we have found the ana ly t ica l  solut ion 
for the p r o b l e m s  fo rmula ted  with s y s t e m  (I), we occa-  
s iona l ly  encounter  i n s u r m o u n t a b l e  diff icul t ies .  These  
a re  caused,  f i r s t  of all ,  by the absence  of a un ive r sa l  
solut ion for the sys t em of pa r t i a l  d i f fe rent ia l  equa-  
t ions (I), p a r t i c u l a r l y  in the case  of combined bound- 
a ry  condit ions;  secondly,  they a re  a r e s u l t  of the c u m -  
b e r s o m e  na tu re  of the f inal  r e s u l t  which occas iona l ly  
does not lend i t se l f  to phys ica l  i n t e rp re t a t ion .  

T h e r e f o r e ,  to find a solut ion for sy s t em (I), in s tudy-  
ing the process of heat- and mass-transfer for the 
case of interaction between the hydrothermal solution 

and enc los ing  rocks ,  it is apparen t ly  best  to use e l ec -  
t ron ic  d ig i t a l - compu te r  p r o c e d u r e s  to achieve a n u m -  
e r i ca l  solution.  These  methods  a re  based on reduc t ion  
of the s y s t e m s  of pa r t i a l  d i f fe rent ia l  equat ions to s y s -  
t ems  of a lgebra ic  equat ions [1,2,  10], or  to o rd ina ry  
d i f ferent ia l  equat ions for  whose solut ion we have ava i l -  
able s t andard  p r o g r a m s  which make use of the approxi -  
mate  methods.  

In connect ion  with the fact that our p r ob l em is non-  
l i nea r  and, consequent ly ,  cannot be reduced to a s y s -  
tem of l i nea r  a lgebra ic  equat ions ,  we set  ou r se lves  
the goal of compi l ing  a p r o g r a m  for the n u m e r i c a l  so lu-  
tion of sy s t em (I). This  p r ob l e m is cons ide rab ly  fa -  
c i l i ta ted by ce r t a in  specif ic  fea tu res  in the geologic 
objects  being studied:  

1. The un i fo rmi ty  of heat and m o i s t u r e  d i s t r ibu t ion  
as a r e s u l t  of p ronounced  c o m p r e s s i o n  of the tectonic 
s t r u c t u r e s  which se rve  as conductors  of the hydro the r -  
mal  solut ions  (the channels  extend for hundreds  and 
thousands of m e t e r s  and range  in width f rom a f rac t ion  
of a m e t e r  to s eve ra l  me te r s ) .  The the rmal  grad ien t  
and the m o i s t u r e - c o n t e n t  g rad ien t  in the rocks  is d i -  
r ec ted  in this case  along the no rma l  to the walls  of the 
c rack  channels .  

2. The deep condit ions of e levate  d p r e s s u r e s  (to 
thousands of a tmospheres )  and elevated t e m p e r a t u r e s  
(to 500-600 ~ C) de t e r mi ne  the homogeneous or l iquid 
state of the hydro the rmal  solut ions  in which there  is 
v i r t ua l l y  no va po r - ga s  phase.  Here  we can neglect  
the (~i) by means  of which we account  for the heat of 
l iqu id -vapor  phase  t r ans i t i on  (I). 

With cons ide ra t ion  of the above-c i ted  fea tures ,  we 
can s impl i fy  the s y s t e m  of d i f fe rent ia l  equations (I) to 
a s s u m e  the fo rm 

Ott O~tl 
0 T aqi Ox ~ , 

OU1 ( 02U1 o O~tl '~ 
= ,, + o -o-y) ' 

0 ~fx.~l, 

Ot2 0%. 
0-~ = % 2 0 x  ~ , 

l . . / . x <  x .  
OU~ I 02U2 , 02t2 '~ 

(ii) 

The boundary conditions for the uniquely defined 
solution of this system are the following: 
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Fig. 4. Change of temperature (a) and moisture 
content (b) in granites (kq = 3.0 keal/m �9 hr. deg, 

a m = 0.00005 m2/hr): i) ~-= 5 hr; 2) 15; 3) 20; 
4) 30; 5) 50; 6) 75. 

the thermal conductivities (kq) (Figs. i-4). Indeed, if 
a clayey shale is heated to a temperature of t = 40 ~ C 

at a distance of 2 m from the channel within a period 
of time T = 700 hr (Fig. 3), a diatomite slab will be 
heated within a period of time 7 = 500 hr. For granites 
exhibiting a relatively high thermal conductivity, the 

heating to a temperature of 40 ~ C at this distance will 

be completed within only 65 hr (Fig. 4). The moisture 
field, in turn, also exerts significant influence on the 
temperature distribution inthe "hydrotherrnal solution- 

enclosing rocks" system. 

For example, the heating rate for ndryn granites 
(in calculating the temperature distribution we assumed 

that they were impermeable to moisture [6]) lags con -~ 
siderably behind the rate of heating granite exhibiting 

the same thermal conductivity, butwhere consideration 

is given to the diffusion of the solution from the crack 
channel into these granites (Fig. 4). 

Here we have not yet taken into consideration the 

change in the thermal conductivity whose magnitude 

increases sharply as the moisture content of the rocks 

is increased [5,7,9, ii]. 

Consequently, having determined the temperature 
within and around any channel filled with the thermal 
solution, we must account not only for the relationship 

of the thermal conductivity to temperature and mois- 

ture (i. e. , the effective thermal conductivity kef f = 
=f(t, U)), but also to the moisture gradient in the rocks. 

An interesting phenomenon is the appearance of 
"temperature stagnation zones n in the heated rocks and 
their presence for a prolonged period of time. Such 
zones are formed where the isochrones intersect at 

the nodes whose coordinates are strictly fixed for the 

corresponding rocks (Figs. 1-4). The physical inter- 

pretation of the factors responsible for such an effect 

can be determined through special studies. 

NOTATION 

x is the instantaneous coordinate, m; ~- is the time 
coordinate, hr; t is the temperature, ~ U is the 

moisture content, kg~kg; kq is the therma ! conductivity, 
kcal/m, hr. deg; Cq is the heat capacity, keal/kg, deg; 

p is the density, kg/m; k m is the moisture conductivity 

coefficient, kg/m. hr �9 ~ a is the thermal diffusivity 

(aq), and moisture diffusivity (am), m2/hr; 6 is the 
thermal gradient, kg/kg, deg; r is the specific heat of 

evaporation, kcal/kg; ~ is the evaporation criterion 

(0 _< ~ __ i); V = grad = (~/Dx + ~/~y + 8/8z) is the gra- 
dient; V 2 = (~2/~x2 + 82/~y2 , ~2/~z2 ) is the Laplace op- 

erator; h is the grid pitch. 
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the in i t ia l  condi t ions  

( t o when 0 :~ x -~ l, 
t ( x ' ~ ) l ~ = ~  when/ < x ~  ~ ,  (1) 

Uo ~const when 0 -<~. x :-~ l, (2) 

(] (X, "~) Iz=O = U'2 when l < x ,~ c,o, 

the boundary conditions 

Oh (x, r) O& (x, r) ~=, 

OU~ (x, ~) OU~ (x, ~) ~=~ 
= , ( 4 )  

Oq(x,~}l = o ,  (5) 
OX 1,~-o 

OU,(x, r) I = O, (6) 
Ox t 

& (x, ~) I ~  = t~ = const, (7) 
U2 (x, ~)]~.,~ = U~ = const. (8) 

Thus the s y s t e m  of equat ions  (II) is a m a t h e m a t i c a l  
model  of a t w o - s t r a t u m  med ium cons i s t ing  of a s i ng l e -  
phase l iquid hydro the rma l  solut ion (0 <_ x _< l) inc lud-  
ing enc los ing  rocks  of va r ious  po ros i t i e s  (l -< x < oo) 
and a boundary of s epa ra t ion  (l). 

Here  we examine  half the a x i s y m m e t r i c  channel  
(boundary condi t ion (5)). 

We a s s u m e  that the solut ion (t = 350 ~ C) i n s t a n t a -  
neous ly  f i l l s  the c rack  channel  and cools the re in ,  i n t e r -  
act ing with the side rocks  ( in i t ia l  condit ions (1) and (2)). 
Here  the m a s s  of the solut ion is cons ide rab ly  g r e a t e r  
than that of its f rac t ion  which diffuses into the rocks ,  
s ince  the o v e r - a l l  volume of the po res  f i l led with the 
solut ion is i ncomparab ly  smal l  in compar i son  with the 
channel  volume.  The amount  of the solut ion in the c rack  
channel  is the re fore  a s s u m e d  to be constant  ( ini t ia l  
condit ions (2) and (6)). 

Fo r  the der ived  sys t em (II), with cons ide ra t ion  of 
the in i t ia l  and boundary  condi t ions ,  we compiled a p r o -  
g r am for its solut ion on a BESM-2M computer .  The 
p r o g r a m  is based on a method of f ini te  d i f fe rences  (or 
grids)  which is used for a broad c l a s s  of equat ions  in 
ma thema t i ca l  phys ics  [1, 2, 10]. The e s sence  of this 
method l ies  in the fact that the domain((D = (0 _ x < 
< ~ )  of cont inuous change in the a rgumen t  (in our  case ,  
the space coord ina tes  x) is  r ep laced  by a d i s c r e t e  set 
of points  (D h = { x  i = i h ,  0_< x_< l; x i = l + i h ,  l < x <  
< ~o) in geomet r i c  space (xi). Then,  ins tead  of the con-  
t i n u o u s - a r g u m e n t  funct ion we obtain the d i s c r e t e - a r g u -  
m e n t  funct ion (f(x,~-) ~ f i  x (ih, ~-)). We choose a set  of 
points  (x i) so as to sa t is fy  boundary  condit ions (7) and 
(8) at the point  (P). 

The de r iva t ives  with r e spec t  to x in the equat ions 
of sys t em (II) a re  approx imate ly  by the d i f fe rence  r a -  
t ios 

Of(x, r) _ t (x  ~-h, r) - - f ( x - - a ,  r) + ~ (h ) ,  
Ox 2h 

o~f (x, 0 
Ox 2 

_ f ( x  q-h' r ) - - 2 f ( x ' ' O + f ( x - - h '  r) +Re(h) ,  
h~ 

where 

I RI (h) l < h 2  max fro(x, r) 
3I .--h~x~x+h 

and 

I R2 (h) [ -~ 2h---~z max fw (x, ~) 
4! x-a~x~x+a 

a re  e r r o r s  in the approximat ion  of the der iva t ives .  
As a r e s u l t  of all  these t r a n s f o r m a t i o n s ,  the s y s -  

tem of pa r t i a l  d i f fe rent ia l  equat ions (II) with c o n s i d e r a -  
tion of the co r r e spond ing  boundary and in i t ia l  condi-  
t ions changes into a sy s t em of o r d i n a r y  d i f fe ren t ia l  
equat ions ,  solved for the der iva t ive  with r e spec t  to 
t ime  (T) of the sought funct ions :  

dt2 
dr  s 

d2___ L = 9aql (t.2- tl), 
d'~ l ~ 

9aql (t t _ 2t~) + 9aql 
5 ~q2 / 

5 Zq2 

c[t 3 25aq2 
d--~ = (p-------/)~ (~" - -  2 t~) 

._~ 25aq2 
(p __ l)2 ( ~ L  + 5 kq2 ~ 

• \ l p - - l a /  ' 

dr__ A ...... 25aq2 (t5 - -  2 t4 q- t3), 
d r (p - -  I)" 

dr5 _ 25 %~ 
(P _ / ) ~  (t8 - -  2 t~ -k tO, 

_ 25a.~ (t~--tp), 
(p -- / )~ 

dUn 
d r  

d r  

dr  

25am2 (U4-- 2 U~ § Uo) + 25 a,~, 8 (t, - -  2 t3) 
(p - -  O~ (p - -  h ~  

25 am~ 8 " 5 ~q2 tn~ 
+ - -  5~q2- / ( ~ & +  , ( p  - -  /)2 ( ---~ + ~ -  l ] 3  ~qi ~ ] 

d y ,  
_ 25 am2 (Us - -  2 U4 + Ua) 

d r (p __/)2 

I_25 am2 6 a 

dU5 -- 25 a,,2 (Us - -  2 U5 + U~) 
dr  (p__/)2 

_~. 25 am2 8 (is - -  2 ts -~- t4), 

dU6 -- 25am2 (U~--Uo)-}-25a"2------6(th--tp), 
dr (P--O* (P--O* 

dr.  
- - E l ,  
dx  

F or  the der ived  sys t em (III) we compiled a p r o g r a m  
for its so lut ion on a BESM-2M computer  (with i n t ro -  
duct ion of the addi t ional  equat ion d'r/dq- = 1), which in-  
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volves ca lcu la t ion  of the r igh t -hand  m e m b e r s  of the 
equat ions and the p r o c e s s i n g  of these  r e su l t s .  

P rov i s i on  is made in the proposed  p r o g r a m  for 
swi tching to the s t andard  p r o g r a m  (compiled by the 
Computer  Center  of the USSR Academy of Sciences) ,  
which makes  use  of the Adams method and prov ides  
for au tomat ic  se lec t ion  of the t ime  step. 

The resulting solution of ti(x, "r) and Ui(x,-r) (Figs, 
i-4) differs from the sought solution by no more than 

0~ max fIu  ~-) 
~Ex 

In this fo rmula t ion  of the p rob lem,  such an e r r o r  
is quite acceptable .  The p r o g r a m  for the n u m e r i c a l  
solut ion of s y s t e m s  such as the one under  c o n s i d e r a -  
tion p e r m i t s  us to find the d i s t r ibu t ion  of the t e m p e r a -  
tu res  and m o i s t u r e  contents  for the mos t  va r ied  of 
rocks ,  so i l s ,  and cons t ruc t ion  m a t e r i a l s ,  in which the 
phys ica l  p r o p e r t i e s  va ry  over  a wide range.  

We inves t iga ted  the p r o c e s s  of hea t -  and m a s s - t r a n s -  
fer  in the fo rma t ion  of the m o i s t u r e -  and t e m p e r a t u r e -  
f ie lds  for sands tones ,  clayey sha les ,  g r an i t e s ,  and 
d ia tomi te  s labs  (Figs .  1 -4) .  The data on the i r  t he r mo-  
physica l  p r o p e r t i e s  and the p rope r t i e s  of m o i s t u r e  con-  
duct ion were  taken f rom the var ious  papers  by A. V. 
Luikov [7,8],  E. A. Lyubimova,  G. N. Star ikova,  and 
A. P. Shushpanov [9], V. N. Kobranova  [5], and A. F.  
Chudnovskii  [11]. 

A common and c h a r a c t e r i s t i c  fea ture  of mos t  rocks  
is the r e l a t i ve ly  rapid  ra te  of heat ing in c o m p a r i s o n  
with the r a t e  at which they take up m o i s t u r e  f rom the 
hydro the rma l  solution.  An apparen t  except ion is r e p -  
r e sen t ed  by the l a r g e - g r a i n  rocks ,  s ince  even in the 
case of s m a l l - g r a i n  sands tones  we find no marked  dif-  
f e rence  between the t r a n s p o r t  of energy  and ma t t e r  
(Fig. 1). 
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Fig. 2. Change of temperature (a) and moisture 
content (b) in diatomite slab (kq = 0.2 keal/m. 

�9 hr.deg, a m= 0.00005 m2/hr): i) ~-= 3 hr; 
2) 30; 3) 50; 4) 100; 5) 200; 6) 300; 7) 400; 

8) 500; 9) 600. 

The g r e a t e r  the poros i ty  of the rock,  the m o r e  
c l ea r ly  defined the delay in the propagat ion  of the m o i s -  
ture  f ron t  r e l a t ive  to the motion of the heat ing f ront  
(Figs.  2 -4) .  Consequent ly ,  the diffusion of the so lu-  
tion in rocks  is a funct ion of the i r  poros i ty  and the 
assoc ia ted  coeff ic ient  of m o i s t u r e  t r a n s p o r t  (am). How- 
ever ,  this  is not a uniquely  defined re la t ionsh ip ,  s ince  
the m o i s t u r e  field is fo rmed  in p rev ious ly  heated rocks  
in which the effect of the t h e r m a l - g r a d i e n t  coefficient  
[6] is evident ,  i . e . ,  U = f ( a m , 5 ) .  

On the other hand, the d i s t r ibu t ion  of t e m p e r a t u r e s  
in rocks  of any poros i ty  is de t e rmined  p r i m a r i l y  by 
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b 

Fig.  3. Change of t e m p e r a t u r e  (a) and m o i s t u r e  
content  (b) in c layey shales  (~.q = 0.3 kca l /m ~ 
�9 h r . d e g ,  a m =  0 . 0 0 0 4 m 2 / h r :  1) T= 1 5 h r ;  2)50; 
3) 100; 4) 200; 5) 300; 6) 400; 7) 500; 8) 700. 
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