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We consider the mathematical model of the heat- and mass-transfer
process in the "hydrothermal solution—enclosing rocks” system and we
present a method for the construction of the mathematical model.

In studying the physicochemical processes involved
in the interaction of hydrothermal solutions with en-
closing rocks, it becomes necessary to study the space-
time distribution of moisture and temperatures about
the migration paths of the solutions.

The dynamics of moisture~ and temperature~field
formation is the most important factor governing the
onset and progress of ore formation, of the changes in
the rocks surrounding the ore, and of the primary ele-
ment scattering halos.

In determining the space-time distribution, we have
to solve the system of Fourier-Fick partial differen-
tial equations describing the processes of heat- and
mass-transfer in various media. For a multistratum
medium, in general form these equations are repre-
sented by the system
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where (i=1,2,...,n).

An additional condition ensuring a uniquely defined
solution is the behavior of t; and Uj at the boundaries
of the region under consideration.

Since such systems are used to describe a broad
class of physical phenomena, it became necessary to
develop reliable methods for the solution of the differ-
ential equations.

Over several tens of years, such methods have
been developed, and they are being used successfully
in various branches of science and engineering [1, 2,
4,7,8,10].

However, once we have found the analytical solution
for the problems formulated with system (I), we occa~
sionally encounter insurmountable difficulties. These
are caused, first of all, by the absence of a universal
solution for the system of partial differential equa-
tions (I), particularly in the case of combined bound-
ary conditions; secondly, they are a result of the cum-~
bersome nature of the final result which occasionally
does not lend itself to physical interpretation.

Therefore, to find a solution for system (I), in study-
ing the process of heat~ and mass-transfer for the
case of interaction between the hydrothermal solution
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and enclosing rocks, it is apparently best to use elec-
tronic digital-computer procedures to achieve a num-
erical solution. These methods are based on reduction
of the systems of partial differential equations to sys-
tems of algebraic equations [1,2,10], or to ordinary
differential equations for whose solution we have avail-
able standard programs which make use of the approxi-
mate methods.

In connection with the fact that our problem is non-
linear and, consequently, cannot be reduced to a sys-
tem of linear algebraic equations, we set ourselves
the goal of compiling a program for the numerical solu-
tion of system (I}). This problem is considerably fa-
cilitated by certain specific features in the geologic
objects being studied:

1. The uniformity of heat and moisture distribution
as a result of pronouneed compression of the tectonic
structures which serve as conductors of the hydrother-
mal solutions (the channels extend for hundreds and
thousands of meters and range in width from a fraction
of a meter to several meters). The thermal gradient
and the moisture-content gradient in the rocks is di-
rected in this case along the normal to the walls of the
crack channels,

2, The deep conditions of elevated pressures (to
thousands of atmospheres) and elevated temperatures
(to 500—600° C) determine the homogeneous or liquid
state of the hydrothermal solutions in which there is
virtually no vapor-gas phase, Here we can neglect
the (§;) by means of which we account for the heat of
liquid-vapor phase transition (I).

With consideration of the above-cited features, we
can simplify the system of differential equations (I) to
assume the form
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The boundary conditions for the uniquely defined
solution of this system are the following:
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Fig. 4. Change of temperature (a) and moisture
content (b) in granites (Ay = 3.0 kcal/m - hr - deg,
am = 0.00005 m?/hr): 1) 7 =5 hr; 2) 15; 3) 20;
4) 30; 5) 50; 6) 75.

the thermal conductivities (Ag) (Figs. 1—4). Indeed, if
a clayey shale is heated to a temperature of t = 40° C
at a distance of 2 m from the channel within a period
of time 7 = 700 hr (Fig. 3), a diatomite slab will be
heated within a period of time 7 = 500 hr. For granites
exhibiting a relatively high thermal conductivity, the
heating to a temperature of 40° C at this distance will
be completed within only 65 hr (Fig. 4). The moisture
field, in turn, also exerts significant influence on the
temperature distribution inthe "hydrothermal solution—
enclosing rocks" system.

For example, the heating rate for "dry" granites
(in calculating the temperaturedistribution we assumed
that they were impermeable to moisture [6]) lags con~
siderably behind the rate of heating granite exhibiting
the same thermal conductivity, but where consideration
is given to the diffusion of the solution from the crack
channel into these granites (Fig. 4).

Here we have not yet taken into consideration the
change in the thermal conductivity whose magnitude
increases sharply as the moisture content of the rocks
is increased [5,7,9,11].

Consequently, having determined the temperature
within and around any channel filled with the thermal
solution, we must account not only for the relationship
of the thermal conductivity to temperature and mois-
ture (i. e., the effective thermal conductivity Agsp =
= f(t,U)), but also to the moisture gradient in the rocks.

An interesting phenomenon is the appearance of
"temperature stagnation zones" inthe heated rocks and
their presence for a prolonged period of time. Such
zones are formed where the isochrones intersect at

the nodes whose coordinates are strictly fixed for the
corresponding rocks (Figs. 1—4). The physical inter-
pretation of the factors responsible for such an effect
can be determined through special studies.

NOTATION

x is the instantaneous coordinate, m; 7 is the time
coordinate, hr; tis the temperature, °C; U is the
moisture content, kKg/kg;Aq is the thermal conductivity,
keal/m . hr - deg; cq is the heat capacity, keal/kg - deg;
o is the density, kg/m; Ay, is the moisture conductivity
coefficient, kg/m - hr - °M; a is the thermal diffusivity
(aq), and moisture diffusivity (ap), m?%/hr; 6 is the
thermal gradient, kg/kg-deg; r is the specific heat of
evaporation, kcal/kg; £ is the evaporation criterion
(0= £=1); V=grad =(8/0x + 8/0y + 8/8z) is the gra-
dient; V2 = (8%/6x® + 9%/6y% + 6%/62%) is the Laplace op-
erator; h is the grid pitch.
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the boundary conditions
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Thus the system of equations (II) is a mathematical
model of a two-stratum medium consisting of a single-
phase liquid hydrothermal solution (0 = x =< [) includ-
ing enclosing rocks of various porosities (I < x < )
and a boundary of separation ().

Here we examine half the axisymmetric channel
{boundary condition (5)).

We assume that the solution (t = 350° C) instanta~
neously fills the crack channel and cools therein, infer-
acting with the side rocks (initial conditions (1) and (2)).
Here the mass of the solution is considerably greater
than that of its fraction which diffuses into the rocks,
since the over-all volume of the pores filled with the
solution is incomparably small in comparison with the
channel volume. The amount of the solutioninthe crack
channel is therefore assumed to be constant (initial
conditions (2) and (6)).

For the derived system (II), with consideration of
the initial and boundary conditions, we compiled a pro-
gram for its solution on a BESM-2M computer. The
program is based on a method of finite differences (or
grids) which is used for a broad class of equations in
mathematical physies [1,2,10]. The essence of this
method lies in the fact that the domain{(D = {0 = x <
< =}) of continuous change in the argument (in our case,
the space coordinates x) is replaced by a discrete set
of points (DR ={xj =ih, 0 =x=]; xj=1+ih, I <x<
< =) in geometric space (x;). Then, instead of the con-
tinuous~argument function we obtain the discrete-argu-
ment function (f(x,7) = f; X (ih, 7)). We choose a set of
points (x;) so as to satisfy boundary conditions (7) and
(8) at the point (P).

The derivatives with respect to x in the equations
of system (II) are approximately by the difference ra~
tios

t3 (%, T) |xo00 = o = const,
Us (X, T) |00 = Us = const.

D) feh D=t ek gy
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where

2
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are errors in the approximation of the derivatives.
As a result of all these transformations, the sys-

tem of partial differential e

quations (II) with considera-

tion of the corresponding boundary and initial condi-

tions changes into a system

of ordinary differential

equations, solved for the derivative with respect to

time (1) of the sought functions:
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For the derived system (III) we compiled a program
for its solution on a BESM-2M computer (with intro-

duction of the additional equ

ation d7/dT = 1), which in-



volves calculation of the right-hand members of the
equations and the processing of these results.

Provision is made in the proposed program for
switching to the standard program (compiled by the
Computer Center of the USSR Academy of Sciences),
which makes use of the Adams method and provides
for automatic selection of the time step.

The resulting solution of tj{x, 7) and Uj{x, 1) (Figs.
1—4) differs from the sought solution by no more than

0.03 max Ve

In this formulation of the problem, such an error
is quite acceptable. The program for the numerical
solution of systems such as the one under considera-
tion permits us to find the distribution of the tempera-
tures and moisture contents for the most varied of
rocks, soils, and construction materials, in which the
physical properties vary over a wide range.

We investigated the process of heat~ and mass~trans-
fer in the formation of the moisture—- and temperature-
fields for sandstones, clayey shales, granites, and
diatomite slabs (Figs. 1—4). The data on their thermo-
physical properties and the properties of moisture con-
duction were taken from the various papers by A. V.
Luikov [7,8], E. A. Lyubimova, G. N. Starikova, and
A, P. Shushpanov [9], V. N. Kobranova [5], and A, F,
Chudnovskii {11].

A common and characteristic feature of most rocks
is the relatively rapid rate of heating in comparison
with the rate at which they take up moisture from the
hydrothermal solution. An apparent exception is rep-
resented by the large-grain rocks, since even in the
case of small~grain sandstones we find no marked dif-
ference between the transport of energy and matter
(Fig. 1.
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Fig. 1. Change of temperature (a) and moisture

content (b) in (Ag = 1.1 keal/m x hr - deg, ay =

=0,0012 m%*/hr: 1) 7 = 3 hr; 2) 50; 3) 100; 4) 200;
5) 400.
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Fig. 2. Change of temperature (a) and moisture
content (b) in diatomite slab (Aq = 0.2 kcal/m.
+hr.deg, ay, =0.00005 m¥/hr): 1) 7= 3 hr;
2) 30; 3) 50; 4) 100; 5) 200; 6) 300; 7) 400;

8) 500; 9) 600,

The greater the porosity of the rock, the more
clearly defined the delay in the propagation of the mois-
ture front relative to the motion of the heating front
(Figs. 2—4). Consequently, the diffusion of the solu-
tion in rocks is a function of their porosity and the
associated coefficient of moisture transport (a,,). How-
ever, this is not a uniquely defined relationship, since
the moisture field is formed in previously heated rocks
in which the effect of the thermal-gradient coefficient
[6] is evident, i.e., U = flay,d).

On the other hand, the distribution of temperatures
in rocks of any porosity is determined primarily by
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Fig. 3. Change of temperature (a) and moisture
content (b) in clayey shales (Aq = 0.3 keal/m -
<hr.deg, a = 0.0004 mz/hr: 1) 7 =15 hr; 2) 50;
3) 100; 4) 200; 5) 300; 6) 400; 7) 500; 8) 700.
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